NÉRON MODELS AND COMPACTIFIED PICARD SCHEMES OVER THE MODULI STACK OF STABLE CURVES By LUCIA CAPORASO
نویسنده
چکیده
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve and K its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK ) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(PicXK ) ∼= Pd,g ×Mg B. Moreover Pd,g is compactified by a Deligne-Mumford stack over Mg, giving a completion of Néron models naturally stratified in terms of Néron models. 0.
منابع مشابه
Néron models and compactified Picard schemes over the moduli stack of stable curves
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve andK its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(Pic XK) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(Pic XK) ∼= Pd,g ×Mg B. Moreover Pd,g is co...
متن کاملNéron models over moduli of stable curves
We construct Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let K = k(B) be a one-dimensional function field and let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK) −→ B is the base change of Pd,g via the moduli map B −→ Mg of f , that is: N(Pic XK) ∼= Pd,g ×Mg B. Pd,g is compactified by a...
متن کاملModuli of Elliptic Curves via Twisted Stable Maps
Abramovich, Corti and Vistoli have studied modular compactifications of stacks of curves equipped with abelian level structures arising as substacks of the stack of twisted stable maps into the classifying stack of a finite group, provided the order of the group is invertible on the base scheme. Recently Abramovich, Olsson and Vistoli extended the notion of twisted stable maps to allow arbitrar...
متن کاملNaturality of Abel maps
We give a combinatorial characterization of nodal curves admitting a natural (i.e. compatible with and independent of specialization) d-th Abel map for any d ≥ 1. Let X be a smooth projective curve and d a positive integer; the classical d-th Abel map of X , αX : X d −→ PicX , associates to (p1, . . . , pd) ∈ X the class of the line bundle OX(p1 + . . .+ pd) in Pic d X . Such a morphism has goo...
متن کاملOn Néron Models, Divisors and Modular Curves
For p a prime number, let X0(p)Q be the modular curve, over Q, parametrizing isogenies of degree p between elliptic curves, and let J0(p)Q be its jacobian variety. Let f : X0(p)Q → J0(p)Q be the morphism of varieties over Q that sends a point P to the class of the divisor P − ∞, where ∞ is the Q-valued point of X0(p)Q that corresponds to PQ with 0 and ∞ identified, equipped with the subgroup sc...
متن کامل